Поиск
?


Скопировать ссылку на результаты поиска



Всего: 7    1–7

Добавить в вариант

Тип 15 № 1491
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, 6x в квад­ра­те dx .

А) 42
Б) 22
В) 18
Г) 14
Д) 12

Функція F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x в сте­пе­ни 4 минус 1 є первісною функці f(x). Укажіть функцію G(x) яка також є первісною функції f(x).

А) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в сте­пе­ни 5 минус x
Б) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x в сте­пе­ни 4 минус x
В) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =20x в кубе
Г) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x в сте­пе­ни 4 плюс 1
Д) G левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в сте­пе­ни 4 минус 5

Тип 15 № 1499
i

У пря­мо­кутній си­стемі ко­ор­ди­нат на пло­щині зоб­ра­же­но план пар­ко­вої зони, що має форму фігури, об­ме­же­ної графіками функцій y = f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка і у = 3 (див. ри­су­нок). Укажіть фор­му­лу для об­чис­лен­ня площі S цієї фігури.

А) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Б) S= при­над­ле­жит t_ минус 1 в кубе левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x
В) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 пра­вая круг­лая скоб­ка d x
Г) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 пра­вая круг­лая скоб­ка d x
Д) S= при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 3 минус f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка d x

Тип 15 № 1585
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка dx .

А) 2
Б) 3
В) 4
Г) 5
Д) 6

Тип 15 № 1586
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 1 до 2, дробь: чис­ли­тель: 3, зна­ме­на­тель: конец дроби x в квад­ра­те dx .

А) -1,5
Б) -1
В) 0,5
Г) 1
Д) 1,5

Тип 15 № 1589
i

На ма­люн­ку зоб­ра­же­но графік деякої функції y  =  f(x) (два про­мені із за­галь­ною по­чат­ко­вою точ­кою). Ко­ри­сту­ю­чись ри­сун­ком, об­числіть F(8) − F(2), де F(x) — одна з пер­шо­ряд­них функцій f(x).

А) 6
Б) 7
В) 8
Г) 9
Д) 10

Тип 15 № 1631
i

Ви­ко­ри­сто­ву­ю­чи фор­му­лу Нью­то­на-Лейбніца, об­числіть  S = ин­те­грал пре­де­лы: от 0 до 3, левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те dx .

А) 16
Б) 24
В) 18
Г) 14
Д) 21
Всего: 7    1–7