Поиск
?


Скопировать ссылку на результаты поиска



Всего: 37    1–20 | 21–37

Добавить в вариант

З точки А до кола про­ве­дені до­тичні AB і АС і січна AM, що про­хо­дить через центр кола Про. Крап­ки В, З, M ле­жать на колі (див. мал.). Знайдіть ве­ли­чи­ну кута AOB, якщо  \angle CAO = 25 гра­ду­сов.

А) 25°
Б) 45°
В) 60°
Г) 65°
Д) 75°

Тип 5 № 501
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 38°, ∠ AMN = 109°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 33°
Б) 52°
В) 26°
Г) 30°
Д) 60°

Тип 5 № 510
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 32°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 29°
Б) 30°
В) 60°
Г) 58°
Д) 41°

Тип 5 № 511
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 41°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 24°
Б) 32°
В) 49°
Г) 45°
Д) 60°

Тип 5 № 512
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 35°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 60°
Б) 55°
В) 38°
Г) 30°
Д) 25°

Тип 5 № 513
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 37°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.

А) 60°
Б) 30°
В) 26°
Г) 36°
Д) 53°

Тип 5 № 520
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою AB. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC три­кут­ни­ка ABC.

А) 62°
Б) 68°
В) 34°
Г) 64°
Д) 28°

Тип 5 № 521
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою BC. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BCA три­кут­ни­ка ABC.

А) 66°
Б) 72°
В) 36°
Г) 63°
Д) 27°

Тип Д10 A6 № 875
i

Діаметр ос­но­ви ко­ну­са дорівнює 6, а до­в­жи­на твірної — 5. Знайдіть ви­со­ту ко­ну­са.

А) 2
Б) 12
В) 8
Г) 4
Д) 16

Аналоги к заданию № 875: 886 Все


Тип Д10 A6 № 897
i

Площа ос­но­ви ко­ну­са дорівнює 16π, ви­со­та — 6. Знайдіть площу осьо­во­го перерізу ко­ну­са.

А) 16
Б) 24
В) 48
Г) 8
Д) 28

Аналоги к заданию № 897: 903 Все


Тип Д10 A6 № 899
i

Ви­со­та ко­ну­са дорівнює 8, а до­в­жи­на твірної — 10. Знайдіть площу осьо­во­го перерізу цього ко­ну­са.

А) 14
Б) 32
В) 54
Г) 48
Д) 16

Тип Д10 A6 № 900
i

Діаметр ос­но­ви ко­ну­са дорівнює 12, а до­в­жи­на твірної — 10. Знайдіть площу осьо­во­го перерізу цього ко­ну­са.

А) 64
Б) 8
В) 32
Г) 48
Д) 16

Тип Д10 A6 № 903
i

Площа ос­но­ви ко­ну­са дорівнює 36π, ви­со­та — 3. Знайдіть площу осьо­во­го перерізу ко­ну­са.

А) 18
Б) 9
В) 24
Г) 3
Д) 4

Аналоги к заданию № 897: 903 Все


Тип Д10 A6 № 909
i

Знайдіть площу осьо­во­го перерізу ко­ну­са, радіус ос­но­ви якого дорівнює 3, а твірна дорівнює 5.

А) 12
Б) 24
В) 6
Г) 36
Д) 8

У пря­мо­кут­но­му три­кут­ни­ку АВС катет АС = 12 см, гіпо­те­ну­за АВ = 20 см.

Уста­новіть відповідність між відрізком (1–3) та його до­в­жи­ною (А–Д).

Відрізок

1 катет BC

2 радіус кола, опи­са­но­го нав­ко­ло три­кут­ни­ка АВС

3 ви­со­та три­кут­ни­ка АВС, про­ве­де­на до гіпо­те­ну­зи АВ

До­в­жи­на відрізка

А 19,2 см

Б 9,6 см

В 10 см

Г 8 см

Д 16 см

А
Б
В
Г
Д

1

2

3

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

 

I. У будь-який три­кут­ник можна впи­са­ти коло.

II. У будь-який пря­мо­кут­ник можна впи­са­ти коло.

III. У будь-який ромб можна впи­са­ти коло.

А) лише І
Б) лише II і III
В) лише I i ІІ
Г) лише I i ІІI
Д) І, II і III

Тип 9 № 1484
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Діаго­налі будь-якого ромба ділять його кути навпіл.

II. Діаго­налі будь-якого чо­ти­ри­кут­ни­ка точ­кою пе­ре­ти­ну ділять­ся навпіл.

III. Діаго­налі будь-якого квад­ра­та пер­пен­ди­ку­лярні.

А) лише I
Б) I, II та III
В) лише III
Г) лише I та II
Д) лише I та III

Тип 9 № 1487
i

Точки А, В, С та D ле­жать в одній пло­щині. Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо точка В на­ле­жить відрізку СD, то СB + ВD = СD.

II. Якщо точка А не на­ле­жить відрізку СD, то СА + АD < СD.

III. Якщо відрізок СD пе­ре­ти­нає відрізок АВ в точці О під пря­мим кутом i АО = ОВ, то АС = СВ.

А) лише I та II
Б) лише I
В) лише I та III
Г) лише II
Д) I, II та III

Тип 9 № 1490
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Про­ти­лежні сто­ро­ни будь-якого па­ра­ле­ло­гра­ма рівні.

II. До­в­жи­на сто­ро­ни будь-якого три­кут­ни­ка менша за суму до­в­жин двох інших його сторін.

III. До­в­жи­на сто­ро­ни будь-якого квад­ра­та вдвічі менша за його пе­ри­метр.

А) лише I
Б) лише I та III
В) лише I та II
Г) лише II та III
Д) I, II та III

На ри­сун­ку зоб­ра­же­но коло з цен­тром у точці О, радіус якого дорівнює 6. Хорду ВС видно з цен­тра кола під кутом 60°, ВК — діаметр. Через точку А до кола про­ве­де­но до­тич­ну АВ, при­чо­му АО=2АВ. Уста­новіть відповідність між відрізком (1−3) та його до­в­жи­ною (А−Д).

Вираз

1.    BK

2.    AB

3.    BC

До­в­жи­на відрізка

А    2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Б    6

В    6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Г    3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

Д    12

А
Б
В
Г
Д

1

2

3
Всего: 37    1–20 | 21–37